MTH 605: Topology I

Practice Assignment III

- 1. Show that every connected graph has a maximal tree.
- 2. Show that the Cayley complex \widetilde{X}_G is the universal covering space of X_G .
- 3. Construct \widetilde{X}_G , when $G = \mathbb{Z}_n$.
- 4. If X is a finite graph and Y is a subgraph homeomorphic to S^1 and containing the basepoint x_0 , show that $\pi_1(X, x_0)$ has a basis in which one element is represented by the loop in Y.
- 5. If F is a finitely generated free group and N is a nontrivial normal subgroup of infinite index, then show (using covering spaces) that N is not finitely generated.
- 6. Find all connected covering spaces of $\mathbb{R}P^2 \vee \mathbb{R}P^2$ up to isomorphism.
- 7. Find the covering space of $S^1 \vee S^1$ (where $\pi_1(S^1 \vee S^1) = F(a, b)$), corresponding to the normal subgroup generated by a^2 , b^2 and $(ab)^4$.
- 8. Show that the closed orientable surface S_g of genus g cannot retract onto a separating curve, but it does retract onto a nonseparating curve.